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More than 75% of Arctic population are leaving in 100 cities and towns. Arctic urban environment creates 

and maintains significant local climate anomalies with persistently warmer surface and air temperature 

(Esau et al., 2021), dryer and deeper active soil layer (Klene et al., 2013), modified biogeochemical cycles 

(Polyakov et al., 2018), and ecology (Korneykova et al., 2021). These climate anomalies induce impacts 

ranging from geotechnical hazards (Hjort et al., 2018), such as, e.g., collapse of oil reservoir in Norilsk in 

2020, to grassroot social movements, such as those, e.g., pushing for urban sprawl and greenspace 

development (Stammler and Sidorova, 2015; Fedorov et al., 2021). Since the warmer urban climate 

anomalies or urban heat islands (UHIs) are rather significant, measuring on average from 1oC to 3oC (Miles 

and Esau, 2020), their monitoring is needed for providing high quality, safe and resilient environment for 

urban residents in the Arctic (Orttung et al., 2021).  

Observing Arctic urban climate requires high spatial resolution satellite data and dense in situ urban 

observation networks. Unfortunately, the existing global datasets (Chakraborty and Lee, 2019) and 

ground-based meteorological observations (Lappalainen et al., 2016) are less specific and less accurate 

with respect to the urban Arctic needs. We manually developed a new remote sensing dataset based on 

MODIS to investigate different characteristics (temperature differences, NDVI, etc) of the surface UHIs in 

118 cities north of 63oN. Figure 1 shows UHIs in our dataset (Miles, 2020). This dataset is complemented 

by in-situ UHIARC observational network in several Arctic cities (Konstantinov et al., 2018); more detailed 

urban climate studies were run in Apatity and Nadym, Russia. Figure 2 shows the vertical structure of the 

UHI in Nadym obtained through temperature profiling with drones. 

Concentrated efforts of international teams have considerably improved our understanding and 

quantitative assessment of the Arctic UHIs. Furthermore, adjoint cross-disciplinary studies pointed out to 

socio-environmental impact of the physical climate anomalies. It has been discovered that urban climate 

factors in the Arctic cities are acting distinctly different to those in lower latitudes, e.g., a role of sand as 

ubiquitous building ground could be mentioned. Still, our knowledge of urban climate effects in the region 

remains fragmented. The biophysical processes in warmer urban soils are poorly understood; wider 

impact of urban climates is hardly known. A new fleet of ESA (e.g., Sentinel-series) and NASA (e.g., 
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LandSat-series) satellites is potent to close the existing gaps in observations. Along with more accessible 

networks of amateur-quality meteorological and chemical sensors, the remote-sensing datasets will 

provide for implementation of urban integrated modeling systems – a WMO-GURME initiative – in the 

Arctic cities (Esau et al., 2021). 

 
FIG 1. Surface UHI in 118 Arctic cities based on satellite remote 
sensing (MODIS) climatology for 2001-2018. 

 
 
FIG 2. Vertical profiles of potential temperature 
obtained by drones (colored) in urban areas and the 
temperature profiler MTP-5 (b/w) at the airport, 
Nadym, Russia. Dots shows temperature at 2 m meters 
from relevant automated weather stations (AWSs). 
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