
A Model-Inspired Sampling Network Design and
Representativeness Methodology for the Arctic

Forrest M. Hoffman1, Jitendra Kumar1, Stan D. Wullschleger1,
Larry D. Hinzman2, and Edward A. G. Schuur3

1Oak Ridge National Laboratory, 2University of Alaska-Fairbanks,
3University of Florida

January 12, 2013

Arctic Observing Summit (AOS) 2013
Theme 2 – Observing System Design and Coordination

1 Executive Summary

Climate warming is projected to be especially pronounced at high latitudes. Ris-
ing temperatures and associated impacts at local to Pan-Arctic scales are likely to
be significant. National and international networks that target spatially and tem-
porally intensive monitoring of land, atmosphere, and ocean processes are critically
important investments for understanding our changing climate and environmental
responses to those changes. Despite the potential implications of climatic change
to environmental, societal, and political systems, the Arctic has a limited record
of observations, both in terms of record length and spatial coverage. Resource and
logistical constraints limit the frequency, extent, and optimality of spatial sampling
of environmental observations. In the Arctic, reduced access limits most station
locations to low elevations near the coast or near to roads and population centers,
necessitating the development of a systematic sampling strategy to maximize cover-
age and objectively represent environmental variability at scales that are important
to the land manager, decision-maker, or other stakeholder. Described here is
a quantitative methodology for designing observing networks, stratify-
ing sampling domains, informing site selection, and determining the
representativeness of measurement sites and networks. This analysis pro-
vides model-inspired insights into optimal sampling strategies, offers a framework
for up-scaling measurements, and provides a down-scaling approach for integration
of models and measurements. These techniques can be applied at different spatial
and temporal scales to meet the needs of individual measurement campaigns. Thus,
they are applicable to challenges likely to be encountered by many of those tasked
with the design and coordination of monitoring networks throughout the Arctic.
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2 Introduction

The International Panel on Climate Change (IPCC) Fourth Assessment Report
(AR4) has documented strong evidence for warming of the Earth’s climate over the
last century and has attributed the increase in global temperatures primarily to
rising anthropogenic greenhouse gas emissions (IPCC, 2007). Climate warming is
projected to continue with globally important climate feedbacks and broad implica-
tions for sensitive ecosystems (Anisimov et al., 2007). Warming is projected to be
especially pronounced at high latitudes and accompanied by significant regional im-
pacts. Evidence of Arctic-wide responses is already being observed (Hinzman et al.,
2005). Despite these potential implications, the Arctic has a limited record of low
density observations. The Arctic Cimate Impact Assessment (ACIA) (2005) empha-
sized the need for studies of the complex and interacting processes of the atmosphere,
sea ice, ocean, and terrestrial systems to improve the interpretation of past climate
and projections of future climate. The Committee on Designing an Arctic Observ-
ing Network (2006) identified critical needs and gaps for observations in the Arctic.
It recommended an Arctic Observing Network (AON) to satisfy current and future
scientific needs and offered recommendations on key physical, biogeochemical, and
human dimensions variables to monitor. Subsequently, The Arctic Observing Net-
work Design and Implementation Task Force (2012) summarized these findings and
explored options for a coordinated AON architecture. That report identified the
following as overarching design strategy needs.

• Addressing observational requirements (accuracy, frequency, locations, etc.)
with quantitative rigor, and

• identifying the architecture of a system-scale framework that will enable as-
sessments of how particular observations would impact understanding and pre-
diction issues or problems that span several components of the Arctic system.

While the report suggested three quantitative model-based assessment methods,
primarily relying on repeated data-denial experiments employing dynamical data
assimilation in complex process models to characterize the variability of individual
indices or variables, it identified no general-purpose statistical modeling methodol-
ogy that might usefully partition the spatial and temporal variance of an entire suite
of environmental characteristics simultaneously and suggest representative sampling
locations. Such a technique is described below.

Conducting systematic field observations and long-term monitoring of important
processes are challenging, particularly in the Arctic. The value of such networks is
strong as evidenced by findings made possible by the CALM, ITEX, and permafrost
temperature (TSP) networks, to name just a few. Resource and logistical constraints
limit the frequency and extent of observations, necessitating the development of a
sampling strategy that objectively represents environmental variability at the de-
sired spatial scale. Statistical design of the network, particularly the location of
sampling sites, is critical for maximizing the representativeness of the sampled data,
given a fixed number of sampling locations. Required is a methodology that provides
a quantitative framework for stratifying sampling domains, informing site selection,
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and determining the representativeness of measurements. This information is re-
quired for up-scaling and extrapolating point measurements to the larger landscape
based on the similarity of its environmental characteristics.

Here we describe a quantitative, statistical approach to the design of spatially
distributed monitoring networks. Given the availability of gridded datasets charac-
terizing important environmental factors, sampling domains can be delineated and
the representativeness of the monitoring network can be quantified in the context of
a larger region or continent. This analysis can be carried out by varying the number
of sampling sites in the network to quantitatively evaluate the incremental contribu-
tion of each site to the network and to understand the constituency of each potential
site. We illustrate the approach for the design of a monitoring network for the State
of Alaska using climate and permafrost-related characteristics for the present and
a potential future that includes significant warming. We discuss network design in
terms of site and network representativeness in the context of the large domain (the
State of Alaska), and elaborate on extensions of the approach for understanding the
constituency of individual sites and the use of ancillary logistics data for selecting
affordable and accessible sites while minimizing compromises to representativeness.
This method is independent of resolution, and may be applied across a handful of
small sampling plots, within watersheds or basins, throughout a region, or across
the entire pan-Arctic if adequate, continuous data are available for the domain in
question.

3 Delineation of Quantitative Ecoregions

3.1 Ecoregion Concept

Ecoregions have been widely used to stratify geographic domains into nearly
homogeneous land areas with respect to their geophysical, biological, and climatic
characteristics. Since ecoregions are designed to correspond well with biome distri-
butions and species ranges, they are frequently used as a framework for studying
ecosystem structure and function. Qualitative and generalized ecoregion maps of
the United States and the world have traditionally been developed by experts for
studying ecosystem behavior or to define units for land management (Omernik, 1987;
Olson and Dinerstein, 2002; Bailey and Hogg, 1986; Bailey, 2009). Hargrove and
Hoffman (1999) used cluster analysis for quantitative delineation of ecoregions us-
ing a set of nine environmental characteristics for the conterminous United States
and subsequently demonstrated its application for sampling network design, envi-
ronmental niche modeling, and comparison of global model predictions (Hargrove
and Hoffman, 2004; Hoffman et al., 2005). Nowacki and Brock (1995) and Gallant
et al. (1995) produced ecoregion maps for the State of Alaska using two differ-
ent expert-based methodologies, strongly focused on land form. Later, Nowacki
et al. (2001) produced a “unified” ecoregion map—combining the two expert-based
techniques—by considering limited data and in consultation with experienced ecol-
ogists, biologists, geologists, and regional experts. While useful for some purposes,
such qualitative maps are based on the subjective expertise of the person or group
developing them and suffer from various limitations (Hudson, 1992; Zhou, 1996).
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The question of whether ecoregions can or should be developed using quantitative
statistical methods or should rely upon human expertise has been a matter of debate
among geographers (McMahon et al., 2001). In this study, the ecoregion concept is
employed as a framework for environmental sampling, and a multivariate spatiotem-
poral cluster analysis technique is used to delineate these ecoregions.

3.2 Multivariate Spatiotemporal Clustering (MSTC)

The k-means algorithm (Hartigan, 1975) clusters a dataset of n observation vec-
tors into a user-selected number of groupings or clusters (k). The algorithm begins
by calculating the Euclidean distance of each observation to initial centroid vec-
tors and classifies or assigns each observation to its nearest centroid. Each centroid
vector is recalculated as the vector mean of all observations assigned to it. This
classification and re-calculation process is iteratively repeated until fewer than some
fixed proportion of observations change their cluster assignment between iterations.
In the algorithm used here, convergence is assumed once fewer than 0.05% of the
observations change cluster assignments. The results of the k-means algorithm are
sensitive to the choice of initial centroids. Various heuristics may be employed for
their selection, such as choosing initial centroids to have an even distribution within
data space or to be spread along the edges of the distribution of observations. In this
study, a multi-stage refinement method based on the work of Bradley and Fayyad
(1998) is employed.

For geographic or spatial stratification applications, observation vectors consist
of map cells, the dimensions of which are the biological or geophysical characteris-
tics or variables under consideration. For spatiotemporal partitioning, observation
vectors consist of map cells at different time periods. Hoffman and Hargrove (1999)
developed a parallel version of the k-means algorithm for use on clusters of inex-
pensive personal computers (Hargrove et al., 2001), and this code was used in a
meta-computing environment to cluster data using multiple supercomputers across
the Internet (Mahinthakumar et al., 1999). Hoffman et al. (2008) later implemented
improvements to accelerate convergence, handle empty cluster cases, and obtain ini-
tial centroids through a scalable implementation of the Bradley and Fayyad (1998)
method. Kumar et al. (2011) extended this work to develop a fully distributed,
highly scalable k-means parallel clustering tool for analysis of very large data sets,
which was employed in this study.

3.3 Input Data Layers

The environmental characteristics that serve as input data layers are selected for
inclusion in the analysis based on their expected predictive power for the environ-
mental properties and processes of interest. The strength of that predictive power
can be tested for individual or combinations of characteristics by performing a series
of factorial analyses with and without them included. This analysis used a set of 37
environmental characteristics, or variables, shown in Table 1, from down-scaled gen-
eral circulation model (GCM) results and observational data for the State of Alaska
at a nominal resolution of 2 km × 2 km. These data were used to define a collec-
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Table 1: The 37 characteristics or variables, averaged for 2000–2009 and 2090–2099,
used in Multivariate Spatiotemporal Clustering (MSTC) for the State of Alaska.

Number
Description or Name Units Source

Monthly mean air temperature 12 ◦C GCM
Monthly mean precipitation 12 mm GCM

Day of freeze mean day of year GCM
standard deviation days

Day of thaw mean day of year GCM
standard deviation days

Length of growing season mean days GCM
standard deviation days

Maximum active layer thickness 1 m GIPL
Warming effect of snow 1 ◦C GIPL
Mean annual ground tempera-
ture at bottom of active layer 1 ◦C GIPL

Mean annual ground surface
temperature 1 ◦C GIPL

Thermal offset 1 ◦C GIPL
Limnicity 1 % NHD
Elevation 1 m SRTM

tion of ecoregions at multiple levels of division across two time periods for Alaska.
Model results were averaged for the present (2000–2009) and the future (2090–2099).
This analysis combined temperature, precipitation, and related bio-climatic projec-
tions from a five-model composite data set of down-scaled GCM results for the
A1B emissions scenario Nakićenović et al. (2000) described by Walsh et al. (2008);
corresponding snow and permafrost projections from the Geophysical Institute Per-
mafrost Lab (GIPL) 1.3 permafrost dynamics model forced with the composite GCM
results (Romanovsky and Marchenko, 2009); limnicity data based on the National
Hydrography Dataset (NHD), pre-processed by Arp and Jones (2009); and elevation
data from the Shuttle Radar Topography Mission (SRTM). The same limnicity and
elevation data were used for both time periods. Because the units of measurement
differ between variables, all data were standardized such that each variable had a
mean of zero and a standard deviation of one prior to clustering to equalize the
contribution from each predictor.

3.4 Alaska Ecoregions – A Case Study

We applied the MSTC approach to derive ecoregions based on climate and to-
pographic factors for the present and the future at multiple levels of division. The
climate and topographic factors discussed above describe the environmental condi-
tions of each map cell and are considered important drivers controlling vegetation
and primary production. Thus, groupings or clusters of similarly characterized map
cells delineated based on these variables define unique ecoregions. As demonstrated
by Hargrove and Hoffman (2004), both present and projected future climate factors
were included in the same analysis so that groups of similar cells were objectively

5



determined across space and through time. MSTC provides a basis for compari-
son of environmental conditions in the future with those in the present. Ecoregions
constructed through this analysis may grow or shrink in spatial area and may shift
across the landscape. At high levels of division or under extreme environmental
change conditions, some present-day ecoregions may become extinct in the future
(i.e., shrink to zero spatial area), while others may exist only in the future (i.e.,
have no analog in the present). This quantitative delineation of ecoregions across
space and through time facilitates assessment of the magnitude of change between
present and future environmental conditions and enables the evaluation of the eco-
logical implications of climate change scenarios. From a conservation perspective,
this methodology maps changing habitats and species at risk from climate change
(Saxon et al., 2005). From a field sampling perspective, this methodology identifies
regions fostering potentially vulnerable ecosystems or supporting large and vulner-
able carbon stores that may be sensitive to climate change (McGuire et al., 2009;
Chapin et al., 2010). Such ecoregions warrant intense observation and benefit from
careful, quantifiable, and defensible sampling network design strategies.

Expert-derived ecoregion maps are static and have boundaries based on subjec-
tive consideration of geographic properties and expert judgment. In contrast, sta-
tistically derived ecoregions can vary with time and are delineated in the data space
or state space representing all the characteristics under consideration. Moreover,
the state space resolution can be varied by selecting different numbers of clusters.
Figures 1(a) and 1(b) contain maps of the 10 quantitatively defined, most-different
Alaskan ecoregions for the present and future, respectively. These quantitative ecore-
gions correspond well with commonly identifiable ecosystem types, like tundra, taiga,
and rainforests (Hoffman et al., submitted). The cluster centroid of each ecoregion
represents the mean value of all the characteristics or state variables for that ecore-
gion. Increasing the selected number of clusters in the k-means algorithm allows the
definition of a larger number of more specifically defined, less generalized ecoregions.
For example, Figures 1(c) and 1(d) contain maps of the 20 quantitatively defined,
most-different Alaskan ecoregions for the present and future, respectively. By con-
tinuing to increase the level of division, the state space resolution can be further
increased. In some cases, a natural hierarchy among ecosystems in the landscape is
manifested as the level of division is increased (Hoffman et al., submitted).

4 Site Selection

Selection of sampling locations for long term monitoring of ecosystem properties
and processes should be guided by an objective, quantitative, systematic, and de-
fensible methodology. Instead, sampling locations in large-scale networks have often
been established in opportunistic, political, or logistically-driven ways only, resulting
in unquantified representation of heterogeneity, biased sampling, uncharacterized un-
certainty, and undirected network growth. Finite resources and logistical constraints
limit the spatiotemporal frequency and extent of environmental observations, neces-
sitating the development of a systematic sampling strategy to objectively represent
environmental variability at the desired spatial scale. An appropriately designed ob-
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servation strategy should be employed to quantitatively delineate sampling domains,
sites, and frequencies. The National Science Foundation’s (NSF’s) National Ecolog-
ical Observatory Network (NEON) adopted the objective, data-based methodology
described above to define 20 optimal sampling domains across the conterminous
United States (Keller et al., 2008; Schimel et al., 2007). Accurate characterization
of the landscape and translation of data collected in the field and laboratory into
useful datasets, process algorithms, and model parameters requires classification of
the landscape into discrete units based on ecological, hydrological, and geological
properties. In much the same way that ecologists develop ecoregions, geologists of-
ten classify landscape areas into geomorphological units based on their geophysical
and hydrological features. For complex and evolving landscapes featuring interact-
ing vegetation and geomorphological dynamics responding to changes in climate,
such as in the Arctic, these stratification concepts may be unified to produce bio-
geomorphic units at relevant spatial scales for landscape characterization, identifica-
tion of ecological and geomorphological processes, assessing the representativeness
of measurements, and providing a framework for scaling measurements and model
parameters to larger domains.

An important aspect of site selection and the up- and down-scaling approach to
integration of models, observations, and process studies is the estimation of represen-
tativeness. The MSTC methodology described above for landscape characterization
offers useful metrics for indicating the representativeness of sites, measurements, and
model parameters. Hargrove et al. (2003) described this technique for understanding
the representativeness of a sampling network based on a suite of environmental gra-
dients considered to be useful proxies for the characteristics being measured. They
applied the technique to quantify the representativeness of AmeriFlux Network.
Maps identifying poorly represented regions can be produced, suggesting where new
measurements should be taken to maximize the value of limited observations in a
sparse sampling network. As discussed earlier, since the cluster centroid represents
the mean value of all the state variables in an ecoregion, the realized centroid for
an ecoregion is the location that best represents the combination of environmental
conditions of the entire ecoregion. Therefore, statistically defined realized centroids,
indicated by blue dots in each ecoregion in Figure 1, are the optimal sampling loca-
tions for each ecoregion. Logistical constraints—including accessibility, availability
of electric power and telecommunications infrastructure, and geologic stability—may
prevent establishment of sampling sites at such optimal locations, particularly in an
Arctic environment. Nevertheless, the MSTC Ecoregion framework can be used to
strike the best compromise between logistical practicality and domain representa-
tiveness by performing a post-hoc analysis using logistical constraints, like distance
to roads or power, difficulty of accessibility for construction and maintenance, avail-
ability of power and communications, etc. This approach provides a means for
quantifying the representativeness of measurements taken at sub-optimal locations,
either within an ecoregion or across any larger domain for which the desired state
variables are available.
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5 Quantifying Representativeness

While most in situ field measurements are made at relatively small, individual
geographic points, ecosystem processes operate at many scales. In order to utilize
limited point measurements at larger spatial and temporal scales for input to or
evaluation of process modeling or for estimating landscape-scale characteristics, the
representativeness of those measurements must be quantified in the context of a het-
erogeneous and evolving landscape. A useful representativeness metric is one that
can inform the selection of sampling locations, up-scaling of point measurements,
down-scaling of remote sensing data, and extrapolation of measurements to unsam-
pled domains. The representativeness metric described by Hargrove et al. (2003)
provides a unit-less, relative measure of the dissimilarity between the ecoregion of
interest, which may contain a sampling site, and any other ecoregion. It is calculated
as the Euclidean distance between two ecoregion centroids within the standardized
n-dimensional state space. Ecoregions with similar combinations of environmental
conditions will have centroids located near to each other in state space. Therefore,
the Euclidean distance between those centroids will be small, representing a low
dissimilarity or high representativeness measure. Meanwhile, ecoregions with very
different combinations of environmental conditions will have centroids located far
from each other in state space, resulting in a large Euclidean distance between them.
Such ecoregions will have a high dissimilarity or low representativeness measure. To
best capture the detailed heterogeneity at the scale of interest, this ecoregion-based
representativeness should be calculated using MSTC Ecoregions with a large number
of divisions (i.e., a large value of k).

While Hargrove et al. (2003) calculated representativeness in the context of ecore-
gions; however, this same approach can be applied to every map cell projected in-
dividually onto the n-dimensional state space used to perform the cluster analysis
that produced MSTC Ecoregions. This point-based representativeness metric cap-
tures the full range of heterogeneity in the combinations of environmental conditions,
providing a continuously varying measure of dissimilarity for every map cell with
respect to a map cell of interest, which may contain a sampling location. When a
single ecoregion centroid or map cell of interest is considered, a map of site represen-
tativeness can be produced. However, multiple ecoregions or map cells of interest
may be considered simultaneously, for instance, to provide a quantitative measure
of the representativeness of an array or network of sampling sites. The result is
a map of network representativeness for which the dissimilarity measure for every
ecoregion centroid or map cell is the Euclidean distance between that point and the
nearest ecoregion centroid or map cell of interest (i.e., the minimum value from a
stack of site representativeness maps, one for each ecoregion centroid or map cell
containing a measurement site). This representativeness metric, whether ecoregion-
or point-based, can be calculated not only between different geographic points in
space, but also between different (or the same) geographic points through time. For
example, the Euclidean distance between the present combination of environmental
conditions and those of the future for any single map cell represents a measure of the
magnitude of environmental change over time. Therefore, with this metric it is pos-
sible to calculate not only the present-day representativeness of measurements from
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a site, but also the future representativeness of those present-day measurements,
based on future projections of the state variables used in the analysis.

6 Network Representativeness

A monitoring network often consists of a geographically distributed constellation
of measurement sites or may be locations where samples are collected for further
analysis in the laboratory. Quantifying the representativeness of the network as a
whole is important for optimal network design, to avoid unnecessary duplication
and to maximize the coverage of the monitoring network. By combining multiple
maps of site representativeness for every sampling location, and calculating the min-
imum value for every map cell, maps of network representativeness are produced.
Figures 2(a) and 2(b) contain maps of ecoregion-based network representativeness
for all eight candidate sampling sites for the present and future time periods, re-
spectively. Similarly, Figures 3(a) and 3(b) contain maps of point-based network
representativeness for the same eight candidate sampling sites for the present and
future time periods, respectively. White to light gray land areas are well-represented
by the network of sites, while dark gray to black land areas are poorly represented
by the network of sites. If the objective were to maximize the coverage of all envi-
ronments in the State of Alaska, the next sampling location should be chosen within
the darkest land areas shown in the map.

7 Conclusion

Systematic sampling strategies are essential for understanding ecosystem re-
sponses to climate change and informing model development. In the harsh Arctic
environment—where climate change appears to be most rapidly affecting sensitive
ecosystems and vulnerable, carbon-rich permafrost—filling critical gaps in observa-
tions is expensive and technically challenging. To fully explore the regional and
global implications of climate change in the Arctic, global Earth System Models
must capture the important processes and feedbacks. Such models must be de-
veloped based on a rich body of relevant observational data as representative as
possible of multiple spatial and temporal scales. Meanwhile, finite resources and lo-
gistical constraints place restrictions on the number of sampling sites, spatial extent,
frequency, and types of measurements that can be collected. This study proposes
a quantitative, data-based methodology for stratifying sampling domains, inform-
ing site selection, and determining the representativeness of measurement sites and
sampling networks.

Multivariate spatiotemporal clustering (MSTC), based on k-means cluster anal-
ysis, was applied to down-scaled general circulation model (GCM) results and ob-
servational data for the State of Alaska at a nominal resolution of 2 km × 2 km
to define a set of ecoregions at multiple levels of division across two decadal time
periods. Maps of ecoregions for the present (2000–2009) and future (2090–2099)
were produced, showing how combinations of 37 environmental conditions are dis-
tributed across Alaska and how these combinations shift as a result of projected
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climate change in the 21st century. Using this statistical approach, optimal sam-
pling locations, called realized centroids, were identified for each ecoregion at every
level of division. In addition, the resulting geographic shifts and changes in areal
distribution of ecoregions suggested that some environments may disappear, many
will be redistributed, and new ones will appear in the coming century. This analysis
provides insights into the identification of the most sensitive and potentially vul-
nerable Arctic ecosystems and suggests optimal monitoring network strategies for
observing those changes. The Euclidean distance within the 37-dimensional state
space used for MSTC provides a metric for representativeness. Gray-scale maps
of representativeness, showing the similarity of every map cell to a list of eight
candidate samples locations near town sites in Alaska, were produced for each site.
Taken together, these analysis products provide model-inspired insights into optimal
sampling strategies across space and through time, and these same techniques can
be applied at different spatial and temporal scales to meet the needs of individual
measurement or monitoring campaigns.

The representativeness of a sampling network is best maximized before the net-
work is deployed. Even if additional “optimized” sites are added to an existing
network, it will require many more additions to approach the theoretical maximum
representativeness for a given number of initial sites. It is difficult, with only the
sequential addition of new optimized sites, to achieve the same representativeness
once some sampling sites have been established. Representativeness resulting from
such network “repairs” rarely ever equal the representativeness of a network initially
designed de novo with that same number of sampling sites. Even if the network is
to be constructed in stages, it is best to design site placement using the final, ulti-
mate complement of sites and to operate sub-optimally until the full network can
be completed. Otherwise, many more sites will have to be added to the existing
network in order to achieve the same representativeness than could otherwise have
been designed in initially.

Cluster analysis and n-dimensional data space regressions offer quantitative meth-
ods for up-scaling and extrapolating measurements to land areas within and beyond
the sampling domain and provide a down-scaling approach to the integration of
models, observations, and process studies. The accuracy of the up-scaled data will
be higher for areas represented well by the monitoring network and lower for ar-
eas that are poorly represented. At a large scale, these techniques are useful for
delineating distinct, broad regions and optimal measurement sites. However, this
methodology can also be applied at finer spatiotemporal scales, with inclusion of
other geophysical characteristics and remote sensing data, to inform measurement
frequency and site selection within these broader ecoregions.
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editors, A Special Report of Working Group III of the Intergovernmental Panel
on Climate Change, page 570. Cambridge University Press, Cambridge, United
Kingdom, July 2000. ISBN 92-9169-113-5.

John E. Walsh, William L. Chapman, Vladimir Romanovsky, Jens H. Christensen,
and Martin Stendel. Global climate model performance over Alaska and Green-
land. J. Clim., 21(23):6156–6174, December 2008. doi:10.1175/2008JCLI2163.1.

Vladimir E. Romanovsky and Sergei Marchenko. The GIPL permafrost dynamics
model. Technical report, University of Alaska, Fairbanks, Alaska, May 2009. URL
http://www.snap.uaf.edu/files/TheGIPL-1Model-final.pdf.

Christopher D. Arp and Benjamin M. Jones. Geography of Alaska lake dis-
tricts: Identification, description, and analysis of lake-rich regions of a diverse
and dynamic state. Scientific Investigations Report 2008-5215, U.S. Geologi-
cal Survey, 4210 University Dr., Anchorage, Alaska 99508, January 2009. URL
http://pubs.usgs.gov/sir/2008/5215/.

Earl Saxon, Barry Baker, William Hargrove, Forrest Hoffman, and Chris Zganjar.
Mapping environments at risk under different global climate change scenarios.
Ecol. Lett., 8:53–60, 2005. doi:10.1111/j.1461-0248.2004.00694.

A. David McGuire, Leif G. Anderson, Torben R. Christensen, Scott Dallimore,
Laodong Guo, Daniel J. Hayes, Martin Heimann, Thomas D. Lorenson, Robie W.
Macdonald, and Nigel Roulet. Sensitivity of the carbon cycle in the Arctic to
climate change. Ecol. Monogr., 79(4):523–553, November 2009. doi:10.1890/08-
2025.1.

F. S. Chapin, A. D. McGuire, R. W. Ruess, T. N. Hollingsworth, M. C. Mack,
J. F. Johnstone, E. S. Kasischke, E. S. Euskirchen, J. B. Jones, M. T. Jorgenson,
K. Kielland, G. P. Kofinas, M. R. Turetsky, J. Yarie, A. H. Lloyd, and D. L.
Taylor. Resilience of Alaska’s boreal forest to climatic change. Can. J. Forest
Res., 40(7):1360–1370, July 2010. doi:10.1139/X10-074.

Forrest M. Hoffman, Jitendra Kumar, William W. Hargrove, and Richard T. Mills.
Representativeness-based sampling network design for the Arctic. Landscape Ecol.,
submitted.

Michael Keller, David Schimel, William Hargrove, and Forrest Hoffman.
A continental strategy for the National Ecological Observatory Net-
work. Front. Ecol. Environ., 6(5):282–284, June 2008. doi:10.1890/1540-
9295(2008)6[282:ACSFTN]2.0.CO;2. Special Issue on Continental-Scale Ecology.

16

http://dx.doi.org/10.1175/2008JCLI2163.1
http://www.snap.uaf.edu/files/The GIPL-1 Model-final.pdf
http://pubs.usgs.gov/sir/2008/5215/
http://dx.doi.org/10.1111/j.1461-0248.2004.00694
http://dx.doi.org/10.1890/08-2025.1
http://dx.doi.org/10.1890/08-2025.1
http://dx.doi.org/10.1139/X10-074
http://dx.doi.org/10.1890/1540-9295(2008)6[282:ACSFTN]2.0.CO;2
http://dx.doi.org/10.1890/1540-9295(2008)6[282:ACSFTN]2.0.CO;2


David Schimel, William Hargrove, Forrest Hoffman, and James McMahon. NEON:
A hierarchically designed national ecological network. Front. Ecol. Environ., 5(2):
59, March 2007. doi:10.1890/1540-9295(2007)5[59:NAHDNE]2.0.CO;2.

William W. Hargrove, Forrest M. Hoffman, and Beverly E. Law. New analysis
reveals representativeness of the AmeriFlux Network. Eos Trans. AGU, 84(48):
529, 535, December 2003. doi:10.1029/2003EO480001.

17

http://dx.doi.org/10.1890/1540-9295(2007)5[59:NAHDNE]2.0.CO;2
http://dx.doi.org/10.1029/2003EO480001

	Executive Summary
	Introduction
	Delineation of Quantitative Ecoregions
	Ecoregion Concept
	Multivariate Spatiotemporal Clustering (MSTC)
	Input Data Layers
	Alaska Ecoregions -- A Case Study

	Site Selection
	Quantifying Representativeness
	Network Representativeness
	Conclusion

