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ABSTRACT. As systems become increasingly complex and data more abundant, Artificial Intelligence 
(AI) in the form of machine learning is providing novel approaches for studying systems undergoing 
critical transitions. However, to exploit the full capabilities of machine learning in predicting unexpected 
change, algorithms need to move beyond data mining. In this research, we propose the approach how to 
study permafrost disturbance in Siberia. The AI sensors are analyzing remote sensing and field data and 
feeding the data to a stochastic ecosystem model. The model predicts critical transitions and sends the 
information back to AI to evaluate a risk of collapse in the complex soil system. 
 
Overview: Permafrost ecosystems are warming six-times faster than the global mean1, exposing huge 
stocks of organic carbon (C) and nutrients to microbial attack 2. As permafrost thaws, organic matter will 
be decomposed by microorganisms, potentially emitting globally relevant amounts of greenhouse gases in 
a phenomenon termed the “permafrost climate feedback.” Permafrost thaw is a phase transition involving 
complex interactions between surface collapse, hydrology, redox conditions, and microbial metabolism. 
Mechanistic ecosystem models fall short in capturing these multidimensional and stochastic phase 
changes, resulting in demonstrably unrealistic predictions and large uncertainties. For example, Earth 
system model (ESM) estimates of net C release from the permafrost zone do not agree in sign or 
magnitude for 2100 or 23003,4, and some models predict more than a doubling of Arctic and Boreal 
biomass due to uncoupled CO2 fertilization effects and exclusion of disturbance such as wildfire and 
thermokarst5,6. Our proposed research develops a new approach to simulate phase changes in landscape 
geometry and subsequent response of soil microbial communities using stochastic, multiscale models 
validated with “meta-omics” molecular data. Building off recent advances in stochastic bifurcation theory 
in physics and technical breakthroughs in microbial ecology, our approach may provide a 
computationally-frugal predictive framework for simulating high-latitude ecosystem trace gas flux during 
and after permafrost degradation. Because of their uniquely simple and spatiotemporally explicit 
structure, the developed models will be the first to incorporate microbial succession with topographic 
restructuration, using interdepencies to resolve internal feedbacks in energy balance and greenhouse gas 
release. The novel approach will be validated with molecular data from active-layer soils, permafrost 
soils, and a chronosequence of landscapes in different stages of recovery from permafrost collapse in 
Arctic and Boreal Alaska. Stochastic approaches developed here may open avenues for addressing diverse 
spatiotemporal problems including pathogen evolution and transmission, risk of collapse in 
agroecosystems during nutrient loading, and exploring possible microbial activity in permafrost 
ecosystems on Mars. 

Background: Many climate-change-driven feedbacks in complex Earth systems are not and may never 
be precisely and definitively modeled on a mechanistic basis. Even when extensive empirical evidence 
and relatively complete theoretical frameworks are available, compounding uncertainties and emergent 
interactions often reduce the power of both top-down and bottom-up simulations to predict ecosystem 
processes across space and time. The problem is magnified in systems where data are sparse and central 
physical and biological mechanisms are not constrained, as is the case with the permafrost climate 
feedback2. Current modeling frameworks still cannot account for internal and external complexities 
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associated with warming in terrestrial systems, as evidenced by a lack of agreement in sign and 
magnitude of projected C balance, nutrient availability, and landscape evolution3–6. 

It is increasingly recognized that the fate of thawed permafrost C will depend on the 
reorganization of hydrology and associated redox conditions in permafrost landscapes7. The distribution 
of wet and dry surfaces affects the amount of permafrost C thawed, the redox conditions to which it is 
exposed, and the rate and type of microbial metabolism8. Stated otherwise, permafrost thaw causes rapid 
shifts in microbial community and activity, which interact with surface hydrology to determine 
greenhouse gas production and the availability of nutrients in terrestrial and aquatic environments9,10. 
Subsequently, nutrient availability controls the recovery trajectory of vegetation, altering the thermal 
properties of permafrost, albedo and rate of permafrost degradation11,12. These interdepencies illustrate 
why efforts to model the physics and ecology of permafrost thaw separately have been difficult, given 
that the types of modeling used to understand ecological and physical processes are typically quite 
different. Consequently, large-scale ESMs have almost universally overestimated plant C uptake during 
permafrost thaw due to overemphasis of CO2 fertilization and an under emphasis of disturbance and 
nutrient limitation2,3,6. Integrating permafrost thaw and microbiology into Earth system models is a critical 
priority that could provide crucial pathways towards improving predictions of the permafrost climate 
feedback13–15. However, physically based models have had only limited success simulating current and 
future permafrost collapse and subsequent ecological dynamics even at small scales, and limitations in 
microbial data availability have thus far prevented development and testing of alternative modeling 
frameworks.  

Proposed approach: Here, we propose a completely different modeling approach, using conceptual, 
multiscale models to simulate phase changes in surficial geomorphology and subsequent successional 
dynamics in microbial communities experiencing permafrost degradation. Taking advantage of newly 
available data streams from remote sensing and new methods in microbial ecology16,17, we propose 
developing and testing stochastic models of microbial community, predicting diversity and function of 
microorganisms following transition across critical states. Specifically, we propose testing stochastic 
models with new techniques for characterizing the overall microbial capacity for different metabolic 
pathways (metagenomics, metatranscriptomics, and metaproteomics, together referred to as meta-omics) 
in active-layer, permafrost, and a chronosequence of soils recovering from permafrost collapse. We 
hypothesize that unlike many temperate and tropical ecosystems, microbial community will be strongly 
dispersal limited during active-layer deepening, due to limited connectivity within soils. Conversely, 
abrupt subsidence will homogenize initial microbial community, triggering a more metabolically diverse 
successional trajectory when soils transition from frozen to thawed or drained to saturated. While 
exceedingly complex on a process level, these linkages could allow scaling of site-level processes to 
landscape and regional levels if the geometry and extent of changes in permafrost lakes could be 
simulated. 

To mathematically describe microbial community dynamics, we will test fundamental models 
such as Hopfield networks and genetic circuits, which can directly connect with the Ginzburg–Landau 
equation for phase transition in frozen ground that is already used to describe permafrost thaw during 
environmental temperature changes 18. Using this approach we could construct a new conceptual model 
including representation of coupled interactions between micro-scale (microbial community), macro-scale 
(permafrost landscapes), and global-scale (climate forcing) systems. 

To integrate microbial community dynamics into simulations of the permafrost climate feedback, 
we propose using concepts of the Freidlin-Wentzell stochastic theory for dynamical systems19. In this 
case, we can estimate probability of positive and negative competition effects leading to extinctions in 



microbial population or rapid growth of microbial biomass that will dramatically change the level of 
greenhouse gas emissions. Incorporating the climate feedback parameter into this stochastic model20 will 
provide an independent test separate from current modeling approaches to determining the strength of 
positive and negative climate feedbacks in the permafrost zone. 
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