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Introduction 18 

Due to the effect of climate change in the cryosphere and the increasing interest of industry 19 

and policymakers in potential exploitation of geo-resources in the Arctic, there is a clear need 20 

for a better understanding of the natural processes on the Earth's surface and in the Earth’s 21 

crust in polar regions. Seismology is an important contributor to monitoring efforts in the Arctic, 22 

both for studying geotectonic processes and inferring sub-surface structures using earthquake 23 

observations, as well as for the study of glaciers, ice sheets, and permafrost using the new 24 
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field of cryoseismology. In order to improve these capabilities, it is essential to extend the 25 

seismic monitoring infrastructure in the Arctic and to develop new methodologies to exploit the 26 

full potential of the already available seismic data for cryosphere and solid Earth research. 27 

Importance for solid Earth research 28 

A large component of climate research has focused on historical climate scenarios, using them 29 

as models for today’s observed climate change. Past climates cannot be understood without 30 

knowing past geology and the geographic distribution of land and sea, which has a large 31 

influence on water circulation and thereby heat transport in the oceans. Furthermore, knowing 32 

the history of the Earth’s crustal structure can help constraining sea level variations due to 33 

post-glacial uplift (Dangendorf et al., 2017). The geotectonic situation in the Arctic is unique 34 

with a concentration of slow to ultra-slow spreading mid-ocean ridges. Large interest exists for 35 

interdisciplinary studies to investigate the diversity of phenomena related to the formation of 36 

new oceanic lithosphere and the structure and history of continental margins, in particular at 37 

the ultra-slow spreading Gakkel Ridge in the largely inaccessible Arctic Ocean. There is also 38 

the need to investigate the earthquake hazard and risk of method release in the region because 39 

of potential impacts for the exploitation of newly discovered off-shore hydrocarbon reservoirs 40 

in the Arctic. The key for all mentioned issues is a better knowledge of today's tectonics, crust 41 

and uppermost mantle structures, and plate dynamics in and around the Arctic, which can only 42 

be investigated by geology and geophysics, and seismology in particular.  43 

Importance for cryospheric research 44 

The new research field of environmental seismology studies structures and their temporal 45 

variations in the shallow sub-surface that are caused by non-tectonic sources, such as 46 

cryospheric processes or atmospheric forcing (Larose et al., 2015). In particular, seismic 47 

signals originating from glaciers and ice sheets have been recently extensively studied, making 48 

cryoseismology a rapidly developing frontier research topic in Earth Sciences (Podolskiy and 49 

Walter, 2016; Aster and Winberry, 2018). It constitutes a powerful method for better 50 

understanding glacial dynamic processes and inferring englacial and subglacial conditions in 51 
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previously inaccessible areas, complementing traditional glaciological observations from field 52 

or remote sensing due to its independence from visibility conditions, spatial extent beyond 53 

single observation points, and unique high temporal resolution also during polar nights. 54 

Furthermore, using continuous seismic records of permanent stations allows for systematic 55 

analysis of long-term trends and changes in seasonal patterns of cryo-seismicity or sub-56 

surface structures (e.g., permafrost) over a time period of several years or decades. The 57 

potential of seismology has been shown for example through the study of deep icequakes to 58 

uncover stick-slip motion and basal friction laws (see e.g., Aster and Winberry, 2018; Pirli et 59 

al., 2018), through the quantification of calving to better understand mass loss of glaciers 60 

(Köhler et al., 2016, Sergeant et al., 2019), through recent experimental studies to improve 61 

permafrost active layer monitoring (James et al 2019), and by revealing the solid Earth 62 

response to large scale ice melting (Mordret et al., 2016). 63 

Recommendations 64 

Due to the geographic distribution of sea and land, as well as the harsh climate, the seismic 65 

network covering the Arctic is sparse, limiting seismic monitoring to larger magnitude events 66 

only. Currently, permanent seismic networks with varying spatial coverage are being operated 67 

in Alaska, Canada, Greenland (GLISN, Dahl-Jensen et al., 2010), Norway, Russia and on 68 

Svalbard. Western Svalbard has a comparably dense permanent network for Arctic standards 69 

with an average interstation distance of about 100 km and long continuous records (some for 70 

several decades), which makes it in particular suitable for studying changes in glacier activity 71 

(Gajek et al., 2017; Asming and Fedorov, 2015). 72 

The network of permanent seismic stations in the Arctic should therefore, where possible, be 73 

extended to improve detectability and location accuracy of tectonic events and (low-74 

magnitude) cryo-seismicity. Specific topics of interest could be pursued by targeted, temporary 75 

deployments on-shore/off-shore. Furthermore, existing seismic data should be used to extend 76 

regional cryoseismological monitoring to so far unstudied regions and unconsidered time 77 

periods. For a better calibration of seismic measurements, multi-disciplinary, integrated field 78 
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campaigns should be carried out combining passive and active seismic methods with direct 79 

observations of cryosphere processes such as calving and permafrost thaw depths. All these 80 

goals can only be accomplished by intensifying international cooperation. 81 
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