An observation driven modelling of peatland and permafrost dynamics across pan-Arctic

Nitin Chaudhary and Sebastian Westermann

Department of Geosciences, University of Oslo, Sem Sælands vei 1, Geologbygningen, 0371 Oslo, Norway

Theme 2: Observing in Support of Adaptation and Mitigation

Abstract.

The majority of northern peatlands were initiated during the Holocene around 8–12 thousand years ago. Owing to their mass imbalance, they have sequestered huge amounts of carbon in the terrestrial ecosystem. Distribution of soil organic carbon is widespread and uneven across the pan-Arctic. Recent syntheses have filled some existing gaps; however, the extent and remoteness of many locations pose challenges to develop a reliable regional carbon accumulation estimate. In this work, we combined three published peat basal age datasets with some independent measurements to form a most up-to-date peat basal age surface for the pan-Arctic region which we then used to constrain the model in order to reduce the current and future uncertainties related to the northern peatlands carbon cycle. We employed an individual– and patch– based dynamic global vegetation model (LPJ–GUESS) with dynamic peatland and permafrost functionality to quantify the long-term carbon accumulation rates and to assess the effects of historical and projected climate change on peatland carbon balance. We divided our analysis into two parts– the carbon accumulation changes detected within observed peatland boundary and at pan-Arctic scale under two contrasting scenarios (RCP8.5 and RCP 2.6). Our results are largely consistent with published long-term carbon accumulation rates. We found that peatlands would continue to act as carbon sink under both scenarios but their sink capacity would substantially reduce under RCP8.5 scenario after 2050. The 287 sites within the observed boundary showed similar behaviour as pan-Arctic scale but their carbon sink capacity would be further strengthened under RCP 2.6.